Minimal Model Program
Learning Seminar
Week 5:

- Rationality Theorem
- Non-vanishing Theorem.

Rationality Theorem:
Lemma 1: Y a smooth projective variety, $D_{1}, \ldots, D_{n} C_{\text {artier }}$ A normal cross y with $\Gamma A T \geq 0$.

$$
P\left(u_{1}, \ldots, u_{n}\right):=\chi\left(\sum^{\prime} u_{i} D_{i}+\lceil A\rceil\right) .
$$

Assume that or certain $u_{i}, \sum_{i} u_{i} D_{i}$ is nee and $\sum, u_{i} D_{i}+A-K_{T}$ angle
Then, $P \neq 0$ of degree $\leq \operatorname{dim} Y$.
Proof: For m>>0, \sum_{1} mai $D_{1}+A-K_{r}$ is still ample,
$H^{\prime}\left(\sum_{i} m_{1} D_{i}+[A T)=0\right.$ for iso by KV vanishory.
By Non-vanishing Theorem $h^{0}\left(\Sigma^{\prime}\right.$ mai $\left.D_{i}+\Gamma A T\right) \neq 0$ so $X\left(\sum_{i} m u_{1} D_{i}+T A T\right) \neq 0$. Hence

$$
P\left(m u_{1}, \ldots m u_{n}\right) \neq 0 .
$$

Lemma 2: Let $P(x, y) \neq 0$ polynomial of degree $\leq n$
Assume P vanishes for all sufficiently large integral solution of $0<a y-r x<\varepsilon$ for $a \in \mathbb{Z}_{V_{0}}$ and $\varepsilon \in \mathbb{R}_{20}$.
Then, r is rational and in reduced form it has denominator $\leq \propto(n+1) / \varepsilon$.

Picture:

Proof: Assume r irrational, we can find $\left(x^{\prime}, y^{\prime \prime}\right) \in \mathbb{Z}^{2}$
large enough so that $0<\alpha y^{\prime}-r x^{\prime}<\varepsilon /(n+2)$.
By the assumptions $\left.\left(2 x^{\prime}, 2 y^{\prime}\right), \ldots,(C n+1) x^{\prime},(n+1) y^{\prime}\right)$ are also solutions.

In this case, we have that the polynomial $y^{\prime} x-x^{\prime} y$ have $(n+1)$ common zeros.
Hence $\left(y^{\prime} x-x^{\prime} y\right)$ divides P. (since dy $P \leq n$)
If we choose ε smaller and repeat the argument $n+1$ times, we would obtain that $\log P=n+1$. Hence, r is rational

Now, assume $r=u / v$ in lowest terms.
Let $\left(x^{\prime}, y^{\prime}\right)$ be a solution of $a y-r x=\frac{a_{j}}{v}$.
Then $a\left(y^{\prime}+k u\right)-r\left(x^{\prime}+a k v\right)=\frac{a j}{v}$ for any k.
Hence, we conclude that the polynomial

$$
(a y-r x)-(a j / v) \text { divides } P(x, y)
$$

provided than $a_{j} / y<\varepsilon$ because in such case they share at least $n+1$ zeros and deg $P \leq n$.
Therefore, we can only have at most n values j for which $a_{j} / v<\varepsilon$. This implies that

$$
a(n+1) / v \geq \varepsilon
$$

Hence, $v \leqslant \frac{a(n+1)}{\varepsilon}$ as claimed

Theorem (Rationality Theorem): Let (x, Δ) be a proper kit pair so that $N_{x}+\Delta$ is not net. $\alpha \in \mathbb{Z}$ so that $a\left(K_{x+} \Delta\right)$ Carter. H big \& net Cartier divisor. Define: ne f threshold.

$$
r=r(H):=\max \left\{t \in \mathbb{R} \mid H+t\left(K_{x}+\Delta\right) \text { is net }\right\} .
$$

Then r is a rational number of the form $u / v \quad(u, v e z i)$ where

$$
0<v \leqslant a(\operatorname{dim}(x)+1)
$$

Proof: , Cartier inter of $K_{x}+\Delta$
Step 1: We reduce to the case in which H is bot.

$$
H^{\prime}=m\left(c H+d_{a}^{\prime}(K x+\Delta)\right)
$$

By bpf Theorem, we know that $\left|H^{\prime}\right|$ is lops. for $m \gg c \gg d \geqslant 0$.

$$
r(H)=\frac{r\left(H^{\prime}\right)+m d a}{m c}
$$

$r(H)$ rational $\left.\Longleftrightarrow r^{\prime} H^{\prime}\right)$.
$\left\{\begin{array}{l}\text { Remark: } \\ H_{\text {is }} \text { bot } \\ H+\varepsilon\left(K_{x}+\Delta\right) \text { is } \\ \text { semizmple }\end{array}\right.$

If $\operatorname{den}\left(r\left(H^{\prime}\right)\right)|v \Longrightarrow \operatorname{den}(r(H))| \mathrm{mcv}$.
Replace H with H^{\prime} and now H is bops.

Step 2: We study the base locus $L(p, q)$.

$L(p, q)$ to be the base lows of $\left|p H+q^{a}(K x+\Delta)\right|$.
$L(p, q)=x$ if $|p H+q a(K x+\Delta)|=\phi$.
(pi) lane enough in the strip, L(pig) stabilizer

By Noetherian induction it stabilizes to Lo.
$I \subseteq \mathbb{Z}_{1} \times \mathbb{Z}$ of (pop), $0<a g-r p<\varepsilon$ with $L(p, q)=L_{0}$.

Step 3: We define the polynomial $P(x, y)$ and prove that it does not vanish
$j: Y \longrightarrow X$ a \log resolution of (X, Δ).

$$
D_{1}=g^{*} H, \quad D_{2}=\rho^{*}\left(a\left(k_{x}+\Delta\right)\right), \quad K_{r}=\rho^{*}\left(k_{x}+\Delta\right)+A .
$$

$\lceil A\rceil \geq 0, g$-exc.
$P(x, y):=X\left(x D_{1}+y D_{2}+\lceil A \mid)\right.$ is a polynomial of degree $\leq \operatorname{dim}(y)=d_{m}(x)=n$.

$$
y=0, x \gg 0, D_{1} \text { is big \& nef. }
$$

$P \neq 0$. Furthermore,

$$
H^{\circ}\left(Y_{1} p D_{1}+q D_{2}+\lceil A\rceil\right)=H^{\circ}(X, p H+q a(K x+\Delta)) .
$$

(*) From now on, we assume that r is not rational.

Step 4: We show that $L_{0} \neq X$.
If $0<\alpha y-r x<1$, then.

$$
\begin{gathered}
x D_{1}+y D_{2}+A-K x \equiv \rho^{*}(x H+(a y-1)(K x+\Delta)) \\
\tau_{\text {bi }} \& \text { net. }
\end{gathered}
$$

$H^{i}\left(Y, x D_{1}+y D_{2}+\Gamma A \mid\right)=0$ for $i>0$.
For (p, q) large enough $P(p, q) \neq 0$ by the Lemma 21 , so $\left|p H+q a\left(k_{x}+\Delta\right)\right| \neq \varnothing$ for all $(p, q) \in I$, which means that $L_{0} \neq X, L_{0} \subseteq X$

Step 5: We show that $L\left(p^{\prime}, q^{\prime}\right) \subsetneq L_{0}$ for $\left(p^{\prime}, q^{\prime \prime}\right.$ large in the strip, leading to a contradiction.

Fix $(p, g) \in I, f: Y \rightarrow(X, \Delta)$ log resolution sabisfyyi

1) $f^{*}(\underbrace{p H+(q a-1)\left(K_{x}+\Delta\right)}_{\text {big } * \text { net }})-\sum_{i}^{\prime} p_{j} F_{j}$ ample.

2) $K_{y} \equiv f^{*}\left(K_{x}+\Delta\right)+\sum_{i}^{\prime} a_{j} F_{j}$
3) $f^{*}\left|p H+q a\left(K_{x}+\Delta\right)\right|=|L|+\sum r_{j} F_{j}$

We can choose c_{20} and $p_{5}>0$ so that

$$
\sum_{1}\left(-c r_{j}+a_{j}-p_{j}\right) F_{j}=A^{\prime}-F^{\rightarrow} \text { prime }
$$

$\left\lceil A^{\prime}\right\rceil \geq 0, A^{\prime}$ does not contain F in its support.
$F_{\text {maps to a component }} B$ of $L(p, q)=f\left(U_{r_{j}<0} F_{j}\right)$
The base lows of $|p H+q a(K x+\Delta)|$.

$$
\begin{aligned}
& N\left(p^{\prime}, q^{\prime}\right)=f^{*}\left(p^{\prime} H+g^{\prime} a(K x+\Delta)\right)+A^{\prime}-F-K_{\text {ample. }} \\
& \equiv \overbrace{c L}^{\text {ref }}+\overbrace{}^{*}\left(p H+(g a-1)\left(K_{x}+\Delta\right)\right)-\sum_{p_{j}} F_{j} . \\
& +f^{*} \underbrace{\left(\left(p^{\prime}-(1+c) p\right) H+\left(q^{\prime}-(1+c) q\right) a\left(K_{x+\Delta}\right)\right)}_{\text {nf. }}
\end{aligned}
$$

We can choose $\left(p^{\prime}, g^{\prime}\right)$ with $a g^{\prime}-r p^{\prime}<a g-r p$, then

$$
\begin{aligned}
& \left(q^{\prime}-(1+c) q\right) a<r\left(p^{\prime}-(1+c) p\right) \text {. so. } \\
& \left(p^{\prime}-(1+c) p\right) H+\underbrace{\left(q^{\prime}-(1+c) p\right) a}_{\text {is smaller than neg threshold. }}\left(K_{x}+\Delta\right) \text { is net. }
\end{aligned}
$$

We conclude that $N\left(p^{\prime}, q^{\prime}\right)$ is ample.

$$
\begin{array}{r}
H^{\circ}\left(Y_{1} f^{*}\left(p^{\prime} H^{+} q^{\prime} a\left(K_{x}+\Delta\right)\right)+\lceil A\rceil\right) \longrightarrow \\
H^{\circ}\left(F,\left(f^{*}\left(p^{\prime} H+q^{\prime} a(K x+\Delta)\right)+\lceil A\rceil\right) I_{F}\right)
\end{array}
$$

By adjunction $\left.\left(f^{*}\left(p^{\prime} H^{+} q^{\prime} a(K x+\Delta)\right)+\Gamma A\right\rceil\right)\left.\right|_{F}=$

$$
f^{*}\left(p^{\prime} H+g^{\prime} a(K x+\Delta)+A^{\prime}\right) \mid F-K_{F} .
$$

Remindori $K_{x}+\left.F\right|_{F}=K_{F} \quad K_{x}+F+\left.A\right|_{F}=K_{F}+\left.A\right|_{F}$

Applying Lemma 1 \& Lemma 2 to F, we conclude that

$$
H^{0}\left(\left.F_{,}\left(f^{*}\left(p^{\prime} H^{\prime}+q^{\prime} a(K x+\Delta)\right)+\lceil A\rceil\right)\right|_{F}\right) \neq 0 .
$$

Hence, $H^{0}\left(Y, f^{*}\left(p^{\prime} H+g^{\prime} a(K x+\Delta)\right)\right)$ contains

$$
\Gamma \geq 0
$$

a section not vanishing at F.
Same argument using neg Lemma implies that I actually is disjoint from F. Hence

$$
0 \leq f_{*} I \sim\left|p^{\prime} H+q^{\prime} a(K x+\Delta)\right| \text { is a section }
$$

disjoint from $B=f(F) \subseteq L_{0}$.
Thus, $L\left(p^{\prime}, g^{\prime}\right) \subset L_{0} \quad \longrightarrow \longleftarrow$.
So r is rational.

Step 6: We know r is rational, we want to control its denominator.
Assume den is layer thin the constant given by Lemma 2
Lemma 2 \& $\varepsilon=1$. (p, g) large with $0<$ aq $-r p<1$
we have $P(p, q)=h^{0}\left(Y, p D_{1}+q D_{2}+T A T\right) \neq 0$.
Hence, $|p H+q \alpha(K x+\Delta)| \neq \varnothing$ for all $(p(q) \in I$.
Choose (p, q) so that ag-rp is the maximum, equal to $\frac{d}{r}$, using the notation of step 5 , we can show.

$$
X=h^{0} \neq 0 \text { for }\left(f^{x}\left(p^{\prime} H+g^{\prime} a\left(K_{x}+\Delta\right)\right)+\Gamma A^{\prime} \|\right) I_{F}
$$

By Lemma 2, there exists $\left(p^{\prime}, q^{\prime}\right)$ large enough in $0<\alpha g^{\prime}-r p^{\prime}<1$ with $\varepsilon=1$ and $a g^{\prime}-r p^{\prime}<\frac{d}{v}=a g-r p$.
This happens because the later has smaller base low.
Then, the same ayoument than step 5 gives us the contradiction

Theorem (Non-vanishing): Let X be a proper variety. (X, Δ) a sub-klt pair. D net Cartier. $a D-\left(K_{x}+\Delta\right)$ nee \& big for some $a>0$. Then, for all $m \gg 0$

$$
\left.H^{\circ}(X, m D-L \Delta\rfloor\right) \neq 0
$$

Remank: $(X, \Delta) \mathrm{klt}, H^{0}(m D) \neq 0$.
Proof: Step 1: Reduce to X smooth \& a $D-\left(K_{x}+\Delta\right)$ ample
$f: X^{\prime} \rightarrow X$ projective resolution,

$$
\begin{aligned}
& f^{*}\left(k_{x}+\Delta\right)=k_{x^{\prime}}+\Delta^{\prime} \quad\left(x^{\prime}, \Delta^{\prime}\right) \text { sob-klt pair. } \\
& \left.a f^{*} D-\left(K_{x^{\prime}}+\Delta^{\prime}\right)=f^{*} \operatorname{CaD}-\left(K_{x}+\Delta\right)\right) \text { net } x \text { by } \\
& a f^{*} D-\left(K_{x^{\prime}}+\Delta\right)-F \text { ample }\left(X^{\prime}, \Delta^{\prime}+F\right) \text { sub-klt. } \\
& \Delta^{\prime \prime}=\Delta^{\prime}+F, \quad f_{*}\left(\Delta^{\prime \prime}\right) \leqslant \Delta \quad \& \\
& { }^{0 \times} h^{\circ}\left(X^{\prime}, m f^{\prime} D-L \Delta^{\prime \prime} J\right) \leqslant h^{\circ}(X, m D-\lfloor\Delta J) \text {. }
\end{aligned}
$$

Charge (X, Δ) with $\left(X^{\prime}, \Delta^{\prime \prime}\right) \quad X^{\prime}$ smooth \quad with $f^{*} D \quad$ af *D-(K(x)+ $\left.\Delta^{\prime \prime}\right)$ ample.

Step 2: D Ref, $D \equiv 0$.
$\lfloor\Delta\rfloor \leqslant 0$ assume $D \equiv 0$

$$
\begin{aligned}
& h^{0}(X, m D-L \Delta J)=\chi(X, m D-L \Delta J) \\
&=\chi(X,-L \Delta\rfloor) \\
& X(D)=X\left(D^{\prime}\right) \\
& H\left(D-D^{\prime} \equiv 0 \quad\right. h^{0}(X,-L \Delta J) \\
& \downarrow \\
& k V
\end{aligned}
$$

D is not numerically trivial. There exists $C \subseteq X \quad D . C 20$.
Step 3: We claim that there exists go satiofyyy $x \in X$ not in $\sup (\Delta)$, for $q \geq q_{0}$ we can find $M(q) \equiv(q D-(K x+\Delta))$ with multi $M(q)>2 \operatorname{tim} x$.
for A ample and eeo we have

$$
D^{e} A^{d-e} \geqslant 0
$$

We conclude that:

$$
\begin{gathered}
\left(q D-\left(K_{x}+\Delta\right)\right)^{d}=\left(\left((q-a) D+a D-\left(K_{x}+\Delta\right)^{d}\right)\right. \\
\geqslant d(q-a)\left(D \cdot\left(a D-\left(K_{x}+\Delta\right)^{d-1}\right)\right. \\
v^{d} \\
0 \\
\downarrow \\
\text { ample } \\
1-c y c l e \\
(a D-(k x+\Delta))^{d-1}=C+e f f .
\end{gathered}
$$

where C is the curve satisfying $C D=0$.
Conclusion: $(q D-(K x+\Delta))^{d} \longrightarrow \infty$ if $g \rightarrow \infty$.
Fact: A ample, for every $Z \subseteq X$ we cand find $I \sim_{Q} A$ such that $\operatorname{supp}(I) \geq Z$.

- int with A \& Γ is the same

$$
\left|\mathcal{L}_{z}(m A)\right| \ni \Gamma_{0}, \quad \Gamma:=\frac{\Gamma_{0}}{m} .
$$

$X h_{2 s} \operatorname{dm} n, \quad A^{n-1}=\underbrace{I_{1} \cdot I_{2} \ldots \cdot I_{n-1}}_{\text {contains } C}$

$$
\begin{aligned}
& h^{0}\left(e\left(q D-\left(K_{x}+\Delta\right)\right) \geq \frac{e^{d}}{d!}\left(q D-\left(K_{x}+\Delta\right)\right)^{d}+(\text { lower por-gol. }\right. \\
& M(q, e) \in\left|e\left(q D-\left(K_{x}+\Delta\right)\right)\right| \text {. impery thet } M(q, e)
\end{aligned}
$$ has mult > ade at x imposes. at most

$$
\frac{e^{d}}{d!}(2 d)^{d}+(\text { lower powers of e })
$$

condition. $q \rightarrow \infty 0,\left(q D-\left(k_{x}+\Delta\right)\right)^{d}>(2 d)^{d}$.
So for q lange enouph some section satiofies the condition

$$
M(p):=M(q(e) / e .
$$

$M(q) \in\left|q D-\left(K_{x}+\Delta\right)\right|$ has mult $>2 d$ at x
Step 4: Consider a \log resolubion of $(X, \Delta+M(g))$. that dominibes $B I_{x} X$,
(1) $K_{y} \equiv f^{*}\left(K_{x}+\Delta\right)+\sum_{1}^{-1} b_{j} F_{j}, \quad b_{j}>-1$
(a) $f^{*}(a D-(K x+\triangle))-\sum^{\prime} p_{j} F_{j}$ ample $0<p_{j} \ll 1$
(3) $f^{x} M\left(q_{p}\right)=\sum r_{j} F_{j}$, Fo meps to x_{j}

Step 5: We perturb coefficients \& lift from lower dim:

$$
N(b, c)=b f^{*} D+\sum_{i}\left(-c r_{j}+b_{j}-p_{j}\right) F_{j}-k_{r}
$$

is ample as long as $\frac{1}{2} \geq c$ and $b \geq a+c(p-a)$.
we can alurys achieve.
Since $x \notin \operatorname{Supp}(\Delta), \quad b_{0}=d-1, r_{0}>2 d$. hence.

$$
\begin{aligned}
c & <\left(1+(d-1)-p_{0}\right) / 2 d<1 / 2 \\
N(b, c) & =b f^{*} D+A-F-k e \\
H^{0}\left(Y, b f^{*} D+[A T-F)\right. & \left.=H^{0}\left(Y, b f^{*} D-f \cdot L \Delta\right\rfloor\right) \\
& =H^{0}(X, b D-\lfloor\Delta\rfloor) .
\end{aligned}
$$

Since $N(b, c)$ is ample

$$
\begin{aligned}
& H^{\prime}\left(\zeta, b f^{\times} D+\lceil A \mid-F)=H^{\prime}\left(Y, \quad b f^{*} D+\lceil A-F\rceil\right)=0\right. \\
& H^{0}(X, b D-\lfloor\Delta\rfloor) \neq 0 \text { provided that } \\
& \left.H^{0}\left(F,\left(b f^{*} D+\Gamma A\right\rceil\right) \mid F\right) \neq 0 \text {. } \quad \text { this is } \neq 0
\end{aligned}
$$

By adjunction \& Non-vanishy The in dim d_{-1}

Idea of all these proofs:

$$
\begin{aligned}
& a D-(k x+\Delta) \\
& \Gamma \in|a D-(k x+\Delta)|
\end{aligned}
$$ bad sing along a subvariety

To adjunction to Z and lift sections from there.
Definition: (X, Δ) log canonical parr.
$Z \subset X$ is a \log canonical center

$$
a_{E}(x, \Delta)=0 \text { for some \& } C_{E}(X)=Z \text {. }
$$

Theorem: $\quad K_{x}+\Delta l_{z}=k_{z}+\Delta z$ for some $\Delta z \geq 0$ sit $(z, \Delta z) \mid c$. (up to normalizing)

